Extensions 1→N→G→Q→1 with N=C118 and Q=C22

Direct product G=N×Q with N=C118 and Q=C22
dρLabelID
C22×C118472C2^2xC118472,12

Semidirect products G=N:Q with N=C118 and Q=C22
extensionφ:Q→Aut NdρLabelID
C118⋊C22 = C22×D59φ: C22/C2C2 ⊆ Aut C118236C118:C2^2472,11

Non-split extensions G=N.Q with N=C118 and Q=C22
extensionφ:Q→Aut NdρLabelID
C118.1C22 = Dic118φ: C22/C2C2 ⊆ Aut C1184722-C118.1C2^2472,3
C118.2C22 = C4×D59φ: C22/C2C2 ⊆ Aut C1182362C118.2C2^2472,4
C118.3C22 = D236φ: C22/C2C2 ⊆ Aut C1182362+C118.3C2^2472,5
C118.4C22 = C2×Dic59φ: C22/C2C2 ⊆ Aut C118472C118.4C2^2472,6
C118.5C22 = C59⋊D4φ: C22/C2C2 ⊆ Aut C1182362C118.5C2^2472,7
C118.6C22 = D4×C59central extension (φ=1)2362C118.6C2^2472,9
C118.7C22 = Q8×C59central extension (φ=1)4722C118.7C2^2472,10

׿
×
𝔽